
Phase diagrams of liquid crystal polymers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 4531

(http://iopscience.iop.org/0305-4470/20/13/051)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 20:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) 4531-4537. Printed in the U K  

Phase diagrams of liquid crystal polymers 
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U A  190 Physique de la Matibre Condensee, Equipe DYMOR, Parc Valrose, Universitt de 
Nice, 06034 Nice Cedex, France 

Received 11 June 1986, in final form 26 January 1987 

Abstract. A general formula for the free energy of a polymeric mixture is given. Four 
terms are shown to be present: the entropy of mixing, the entropy of conformation, an 
isotropic interaction and an anisotropic interaction. The interaction parameters can be 
related to microscopic characteristics such as degree of polymerisation ( DP) and flexibility 
or persistence length. The DP dependence of the order-disorder transition of liquid crystal 
polymers is discussed. 

1. Introduction 

Certain polymeric substances can form liquid crystalline phases and have been the 
object of numerous recent experimental and theoretical studies (Blumstein 1985, 
Chapoy 1985). Many different types of molecular structure are possible: helical or 
ribbon-like, rigid mesogen alternating with flexible spacer, side-chain mesogens, semi- 
rigid or rigid chains. Experiments on phase transitions in the pure melt and in solution 
have been made by various methods (optical microscopy, viscosity, latent heat of 
transition) and the rigid-rod lattice model (Flory 1982) has been extensively used to 
interpret the experimental data. Theories including chain flexibility (Pincus and de 
Gennes 1978, Khoklov and Semenov 1981, Ten Bosch et a1 1983, Corradini and 
Vacate110 1983) have demonstrated the effect of chain characteristics on the transition. 
The strong isotropic repulsion present in the polymer systems leads to a wide variety 
of phase diagrams (Brochard et a1 1984) but quantitative comparison is still difficult. 

In comparison, the statistical theory of classical fluids is well developed. Molecular 
models for the structure and laws of interaction between molecules have been refined 
and powerful methods based on correlation functions have been given to specify 
thermodynamic properties from these models. Recently, a density functional approach 
has also been applied to nematics (Sluckin and Schukla 1983) and to isotropic polymer 
systems (Hong and Noolandi 1981). 

In the following we extend the density functional expansion to nematic polymers. 
This method proves to be very general and to encompass previous mean-field theories 
of these systems. It also has the advantage of being applicable to all types of liquid 
crystal chains simply by appropriate definition of the correlation functions. 

2. Calculation of free energy 

We consider a mixture of a homopolymer in a solvent. Three different types of solvent 
are possible: a simple monomolecular liquid, a flexible, non-mesomorphic polymer or 
a second mesomorphic polymer. In particular, the first case will be pursued in detail. 
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We denote the number of polymer chains A by fiA= N A I L A  where N A  is the 
number of monomer units and L A  the degree of polymerisation. For the solvent, fig 
will denote the number of solvent units (molecules or chains), L B  the degree of 
polymerisation ( LB = 1 for the monomolecular solvent) and NB the number of monomer 
units N B  = L B  NB. 

In the following the index i will be used to label either polymer ( i  = A) or solvent 
molecules ( i  = B).  

The partition function for the mixture is given by 

* 

where 2, is the partition function due to the kinetic energy, W is the intermolecular 
potential and P i ( {  r l } )  denotes the configurational probability for an individual chain 
or solvent molecule. Using the integral representation of the S function, we can 
introduce the microscopic particle density pi ( r ,  w )  at position r with orientation w. 
Then (7 being a normalisation constant) (Hong and Noolandi 1918) 

-; J d r  dw dr '  dw' pt ( r ,  w) Y, , (  r, w, r' ,  w')pl,( r' ,  w') . ) 
The major terms are given here by Y I , ( r ,  w, r' ,  w'), the intermolecular potential 

between components i i '  with positions rr' and orientations ww', and the quantities QI 
which describe the molecular model for the component i in the mean field U,. For 
example (Freed 1972), if i is a flexible polymer described by the space curve r, ( t )  and 
the statistical Kuhn monomer length b, 

t being the segment length from the origin to the point r, ( t )  and w, ( t )  = ar,/at. In the 
model of semirigid polymers of bend elastic coefficient x and persistence length B = p x  

Then 

where P I ( {  r , } )  is taken from (3 )  or (4). 
I f  i is a simple liquid 

QI = d r  exp( - U, ( r)) .  5 
The partition function can be written in terms of a free energy functional 

z=v j116p,6u ,exp~p,u , ) .  
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In  the saddle function method the functional 9( pI U , )  is minimised with respect to 
pi and ui.  Coupled equations are obtained for the equilibrium densities and mean fields. 

The equilibrium free energy is then 

I 

NI 
I Ll 

.5F( p , u , )  = E  (In T- 1) -c -In Q, d r  dwp,(r ,  w ) u , ( r ,  w )  

+ t  c [ d r  dw d r '  dw' pI ( r ,  w )  V,, ( r ,  w, r', w ' ) p l  ( r ' ,  w ' ) .  
11' J 

The first term gives the entropy of mixing, the second term leads to a conformational 
entropy, the third term takes the mean-field interactions into account and the final 
term accounts for the average two-particle interactions. 

Correspondingly, in the pure materials (the number of monomer units is NP, the 
density distribution is pp and the mean field is up): 

+; d r  dw d r '  dw' pp( r, w )  Vliz( r, w, r ' ,  w')pP,( r' ,  w') 

where Qp (the equivalent of Q1 in the mixture) describes the molecules in the pure- 
material mean fields. 

I 
In the mixture, the free energy of mixing can be defined 

3. Liquid crystalline polymer in a 

3.1. Model free energy 

We will study in more detail the 

simple solvent 

case of a semirigid polymer in solution in a simple 
solvent. The sample density is uniform in the pure materials and in the mixture and 
the density distribution depends on the orientation alone. The number density is 
n, = N,/ V. 

The number density of the pure materials, np = NP/ V, can be used to define the 
partial volumes U, = 1/ np. We assume no volume change on mixing and V = 2,  N, U, 
is the total sample volume. We introduce the volume concentration of polymer A, 
x = n , / n i ,  and of solvent B, 1 - x  = n B / n : .  These quantities correspond closest to the 
weight concentrations given by experiment. We use uA = uB = U. 

The two-particle interaction is expanded in spherical harmonics as (Nakagawa and 
Akahane 1982) 

"im2 

where C( 11, I 2  mml mz)  are the Clebsch-Gordan coefficients. 
Inserting expansion (6) into ( 5 ) ,  introducing the volume concentration x and 

neglecting as usual linear terms in x which do not contribute in the calculation of 
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phase diagrams, we find for the free energy of mixing per site, limiting the expansion 
to 1 = 0, 2, 

A F v  x X 
A F = - = - l n x + ( 1 - x ) l n ( l - x ) - - l n 2 A  

LA LA 

where 

and gA( ww’LA) given by 

solves the equation for a chain in the presence of the orientational (liquid crystal type) 
mean field alone: 

The orientational distribution function of monomers f( w )  is calculated from f( w )  = 

P A (  w ) /  n A :  

f ( W ) = L  ]oLAdt[ d W ’ d W ‘ ‘ g ~ ( W ’ , W , t ) g A ( W , W ’ ’ , ~ A - f ) .  
LA 2~ 

The average order parameter S is given by the average Legendre polynomial 

S = dw P2( w ) f (  w ) .  I 
The space averages 

vi,(Oll) = - dr r2  v,,( r, 011) 
v ‘I 

play the role of effective interaction parameters and uA( W )  = xvAA(o22)sp2( w ) .  
Note that a similar form for the free energy has been proposed by Brochard et a1 

(1984) and, neglecting the isotropic interactions, also by Khoklov and Semenov (1981). 
The limit, vAA(o22) = 0, corresponds to the well known Flory-Huggins model (flexible 
polymers) and {LA= 1, LA/ B + 0, VAA(OOO) = 0) corresponds to the Maier-Saupe 
rigid-rod liquid crystal (Humphries and Luckhurst 1976). In most cases, the interaction 
parameters have been determined Empirically and considered to be constant in tem- 
perature, monomer concentration, etc. These parameters can also be related to the 
microscopic properties of the polymer. 

3.2. Effective interaction 

Because of the interaction between monomers and the coupling of individual monomers 
along a chain, the monomers tend to positions which effectively reduce their potential 
energy. The resulting screening, well known in electrolytes and flexible polymers, has 
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recently been studied in semirigid liquid crystalline polymers (Ten Bosch and Sixou 
1985) and the effective isotropic ( I  = 0) and liquid crystal potential ( I  = 2 )  were calcu- 
lated to give 

V A A ( O O O )  = U A A ( O O O ) / ( k T +  X L A  U ~ ~ ( 0 0 0 ) )  

v A A ( o 2 2 )  = U , , ( O 2 2 ) / ( k T +  x L z u A A ( 0 2 2 ) ) .  

The average bare potential in an expansion in spherical harmonics as in (6) is 

Lz is a function of the persistence length B :  
v A A ( O I 1 ) .  

L z  = A B {  1 + (B/3LA)[exp(-3LA/ B )  - I]}. 

In most cases ~ A A ( 0 0 0 )  > 0 and in liquid crystal polymers v A A ( o 2 2 )  < 0. 

solvent, the effective interactions are then 
We define kTo = LA VAA(OOO),  kT, = L z  u A A ( o 2 2 ) .  Neglecting correlation with the 

In the absence of screening, the Flory isotropic interaction parameter, inversely 
proportional to the temperature, appears. The screening term in V A A ( O O O )  may explain 
temperature discrepancies found in some polymer-solvent systems (Patterson and 
Robard 1978). The total screening of the isotropic interactions at infinite chain length 
is achieved ( V A A ( O O 0 )  + 0,  LA + a). The anisotropic interactions behave quite 
differently with L A .  This will affect molecular weight dependence of phase diagrams 
which will be discussed next. 

3.3. Nematic transition temperature 

In the pure mesomorphic polymer, the temperature T: for the transition to an ordered 
phase ( S  # 0) is calculated from the condition of equality of the free energy (7) in the 
isotropic and anisotropic phases. This also defines the ‘pseudotransition’ temperature 
in mixtures, i.e. the limit for stability of the nematic phase (Brochard et a1 1984). The 
results can be fitted to a simple function in LJB. 

If the effective interaction is taken to be constant, 

If screening effects as given by (9) are included, then 

In both cases, we find that T: shows an initial sharp increase in LA for low degrees 
of polymerisation. This flattens at high L A .  This is indeed observed in many liquid 
crystalline polymer melts (Seurin et a1 1983). 

Screening effects tend to stabilise the nematic phase by increasing the transition 
temperature. Although qualitative agreement is found, the approximations introduced 
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in the screening theory do not permit a quantitative fit. Uncertainties also exist as to 
the value of the persistence length E in these materials. A dependence of the persistence 
length on degree of polymerisation due to screening could account for the slow increase 
of 

The order parameter at the transition is found to vary between 0.43( LA/E  + 0) and 
at high L found in some liquid crystalline polymers. 

0.35( LA/ B + a). 

3.4. Phase diagrams 

As discussed in Brochard et a1 (1984), the phase diagrams in the polymer solvent 
system can be calculated from the equilibrium conditions, as follows: 

(i) the equation for the order parameter, aAF/aS  = 0, 
(ii) the equation for equality of the chemical potential, p = ( J A F / ~ X ) ~ ,  and 
(iii) the equation for equality of the pressure, n = A F  -xp. 
Equilibrium between a nematic phase (N)  of concentration xN and isotropic phase 

( I )  of concentration xt is defined by solutions of the equations 

This combination of equations requires a numerical solution and will be presented 
in a future paper. At high polymer concentration ( x +  1) an analytical solution is 
possible in the vicinity of the pure polymer transition temperature T:. 

For x N + x I +  1 

where vAA(o22) and S are given here by the values in the pure polymer. We obtain 
for the transition temperature Tl(x) to the isotropic liquid, usually plotted in experi- 
ments, 

We can relate VAA(022) to the pure melt transition temperature Tz by either 
VAA(022) = U ~ ~ ( 0 2 2 ) / k T :  or, including screening effects, vAA(022) = 

In both cases we find that the slope, (-dT,(x)/ax), of T , ( x ) ,  decreases with 
increasing LA to flatten at high L A .  This is in agreement with experimental phase 
diagrams on hydroxypropylcellulose in a simple solvent and in a non-mesomorphic 
polymer (Seurin er a1 1984). We also find that the separation x N - x I  at constant T 
increases with increasing LA. 

uAA(022)/k( T:- TO,). 

4. Discussion 

The theory presented here for polymeric liquid crystals introduces isotropic interactions, 
flexibility of the macromolecule and resultant screening of the molecular interactions. 
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In the pure polymer, the critical value of the order parameter at the transition is 
found to be S , ~ 0 . 4 4  as in Maier-Saupe theory. This result is not in agreement with 
experiments which generally lead to high values of S,  (Volino and Blumstein 1984). 
The discrepancy may be due to difficulties in the experiments, especially polydispersity 
of the samples and resultant biphasic separation. It has also been suggested that the 
simple mean-field picture used here may not be valid in these systems. 

The semirigidity of the chain has important consequences on the ordered liquid 
crystalline phase. The orientational entropy is not given simply by the rigid-rod limit 
( L A / B + O )  used in the papers of Khoklov and Semenov (1981) and Brochard et a1 
(1984). This affects the phase diagrams, especially the dependence on the degree of 
polymerisation. 

The screening or self-consistent renormalisation of the interaction between segments 
has also been considered. Although the qualitative trends seem to be correct, the 
question deserves further investigation and is related to a better knowledge of correla- 
tion functions in polymer systems (Lipson et a1 1985). This question, as well as further 
studies on correlation functions, should be pursued. In side-chain liquid crystal 
polymers, the mesomorphic units are weakly correlated by the flexible main chain and 
the interaction parameters are then simply constants referring to a certain mixture 
(Brochard et a1 1984). 

Finally, it should be emphasised that in comparing calculated and experimental 
phase diagrams, it is often found that the slow dynamics of phase separation in high 
molecular weight polymers often masks or alters the observation of biphasic zones 
which may also differ depending on the experimental method used. This makes 
quantitative comparison difficult in these systems. 
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